Mixture Models with Missing data Classification of Satellite Image Time Series QUALIMADOS: Atelier Qualité des masses de données scientifiques

S. lovleff

Laboratoire Paul Painlevé

23 Juin 2017

Sommaire

Clustering using Mixture Models
What is Clustering?
Example
Mixture Models
EM Algorithm and variations
Mixture Model and Mixed Data

Classification of Satellite Image Time Series

Clustering is the cluster building process

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

- ▶ The term Data Clustering first appeared in 1954 (according to
- ► Many, many existing methods

Clustering is the cluster building process

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

- ▶ The term Data Clustering first appeared in 1954 (according to JSTOR) in an article dealing with anthropological data,
- ► Many, many existing methods

Clustering is the cluster building process

Cluster analysis

From Wikipedia, the free encyclopedia

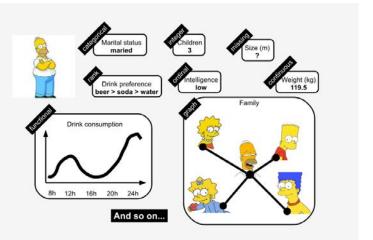
For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

- ► The term Data Clustering first appeared in 1954 (according to JSTOR) in an article dealing with anthropological data,
- ► Many, many existing methods (https://en.wikipedia.org/wiki/Category: Data_clustering_algorithms)

New challenges

Need to algorithms for Big-Data and Complex Data. In particular mixed features and missing values



Joint works with Christophe Biernacki (head of the Inria Modal team), Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: "Clustering cash receipts of the Customers with a loyalty card"

- ► 28 variables related to products
- ▶ 6 variables related to costumers
- ▶ 8 variables related to stores
- n = 2,899,030 receipts

Some meaningful variables with missing val-

Joint works with Christophe Biernacki (head of the Inria Modal team), Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: "Clustering cash receipts of the Customers with a loyalty card"

- ► 28 variables related to products,
- ▶ 6 variables related to costumers,
- ▶ 8 variables related to stores.
- \triangleright n = 2,899,030 receipts.

Joint works with Christophe Biernacki (head of the Inria Modal team), Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: "Clustering cash receipts of the Customers with a loyalty card"

- ► 28 variables related to products,
- ▶ 6 variables related to costumers,
- ▶ 8 variables related to stores.
- \rightarrow n = 2,899,030 receipts.

Joint works with Christophe Biernacki (head of the Inria Modal team), Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: "Clustering cash receipts of the Customers with a loyalty card"

- ► 28 variables related to products,
- ▶ 6 variables related to costumers.
- ▶ 8 variables related to stores.
- \rightarrow n = 2,899,030 receipts.

Some meaningful variables with missing values.

An example (Variables)

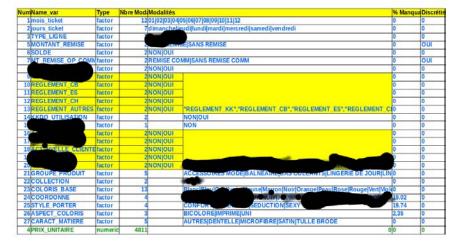
Variables liées aux clients

Num Name yar	Туре	Nore Moda	Modalités	% Marquan	Discrétisé
SCOOR CIVILITE	factor	4	MEIMIMEIR	32.55	NON
2TRANCHE URBAINE	factor	5	+100000[20000 à 50000]-5000[50000 à 100000[5000 à 20000	33.37	NON
-	factor	2	NONOU	0	NON
	factor	2	NONOU	0	NON
SI ANNEE NAISSAMME (ÂDE)	numeric	106		37.07	NON
	integer	225		32.55	NON

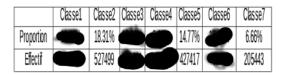
Variables liées aux magasins

An example (Variables)

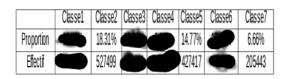
Variables liées aux Produits



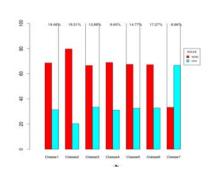
An example (Results)



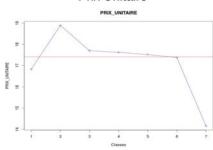
An example (Results)



Solde



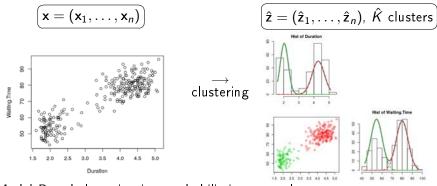
Prix Unitaire



Mixture Models

Main Idea

x in cluster $k \iff \mathbf{x}$ belongs to distribution P_k



Model Based clustering is a probabilistic approach.

R package MixAll and SaaS MixtComp

Two softwares available

► R package MixAll

```
> library(MixAll)
> data(geyser)
> ## add 10 missing values as random
> x = as.matrix(geyser); n <- nrow(x); p <- ncol(x);
> indexes <- matrix(c(round(runif(5.1.n)), round(runif(5.1.p))), ncol=2);</pre>
> x[indexes] <- NA:
> ## estimate model
> model <- clusterDiagGaussian ( data=x. nbCluster=2:3. models=c( "gaussian pk sik"))
> plot (model)
> missingValues(model)
  row col
1 133
           2.029661
  42
4 209 2 54.569144
5 213
        2 54.569144
```

► SaaS software MixtComp https://massiccc.lille.inria.fr/

Hypothesis of mixture of parametric distributions

► Cluster *k* is modeled by a parametric distribution

$$\mathbf{x}_i|z=k\sim p(.|\alpha_k)$$

▶ Cluster k has probability π_k

$$z_i \sim \mathcal{M}(1, \pi_1, \ldots, \pi_K).$$

Mixture model

The model parameters are $\theta = (\pi_1, \dots, \pi_K, \alpha_1, \dots, \alpha_K)$ and

$$p(\mathbf{x}_i) = \sum_{k=1}^K \pi_k p(\mathbf{x}_i; \alpha_k)$$

EM Algorithm

Starting from an initial arbitrary parameter θ^0 , the mth iteration of the EM algorithm consists of repeating the following I, E and M steps.

- ▶ I step: Impute by using expectation of the missing values x^m using $x^{o}, \theta^{r-1}, t_{ik}^{r-1}$
- **E step:** Compute conditional probabilities $z_i = k|x_i|$ using current

$$t_{ik}^{r} = t_{k}^{r}(\mathbf{x}_{i}|\theta^{r-1}) = \frac{p_{k}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}{\sum_{l=1}^{K}p_{l}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}.$$
 (1)

▶ M step: Update ML estimate θ^r using conditional probabilities t_{ik}^r as

$$L(\theta|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{t}^r) = \sum_{i=1}^n \sum_{k=1}^K t_{ik}^r \ln\left[p_k h(\mathbf{x}_i|\boldsymbol{\alpha}_k)\right],$$

EM Algorithm

Starting from an initial arbitrary parameter θ^0 , the mth iteration of the EM algorithm consists of repeating the following I, E and M steps.

- ▶ I step: Impute by using expectation of the missing values x^m using $\mathbf{x}^{o}, \, \theta^{r-1}, \, t_{ik}^{r-1}$
- **E step:** Compute conditional probabilities $z_i = k|x_i|$ using current

$$t_{ik}^{r} = t_{k}^{r}(\mathbf{x}_{i}|\theta^{r-1}) = \frac{p_{k}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}{\sum_{l=1}^{K}p_{l}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}.$$
 (1)

▶ M step: Update ML estimate θ^r using conditional probabilities t_{ik}^r as

$$L(\theta|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{t}^r) = \sum_{i=1}^n \sum_{k=1}^K t_{ik}^r \ln\left[p_k h(\mathbf{x}_i|\alpha_k)\right],$$

Starting from an initial arbitrary parameter θ^0 , the *m*th iteration of the EM algorithm consists of repeating the following I, E and M steps.

- ▶ I step: Impute by using expectation of the missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ▶ **E step:** Compute conditional probabilities $z_i = k|\mathbf{x}_i|$ using current value θ^{r-1} of the parameter:

$$t_{ik}^{r} = t_{k}^{r}(\mathbf{x}_{i}|\theta^{r-1}) = \frac{p_{k}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}{\sum_{l=1}^{K}p_{l}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}.$$
 (1)

▶ M step: Update ML estimate θ^r using conditional probabilities t_{ik}^r as mixing weights

$$L(\theta|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{t}^r) = \sum_{i=1}^n \sum_{k=1}^K t_{ik}^r \ln\left[p_k h(\mathbf{x}_i|\boldsymbol{\alpha}_k)\right],$$

EM Algorithm

Starting from an initial arbitrary parameter θ^0 , the *m*th iteration of the EM algorithm consists of repeating the following I, E and M steps.

- ▶ I step: Impute by using expectation of the missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ▶ **E** step: Compute conditional probabilities $z_i = k|\mathbf{x}_i|$ using current value θ^{r-1} of the parameter:

$$t_{ik}^{r} = t_{k}^{r}(\mathbf{x}_{i}|\theta^{r-1}) = \frac{p_{k}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}{\sum_{l=1}^{K}p_{l}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}.$$
 (1)

▶ M step: Update ML estimate θ^r using conditional probabilities t^r_{ik} as mixing weights

$$L(\theta|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{t}^r) = \sum_{i=1}^n \sum_{k=1}^K t_{ik}^r \ln\left[p_k h(\mathbf{x}_i|\alpha_k)\right],$$

Starting from an initial arbitrary parameter θ^0 , the mth iteration of the EM algorithm consists of repeating the following I, E and M steps.

- ▶ I step: Impute by using expectation of the missing values x^m using $\mathbf{x}^{o}, \, \theta^{r-1}, \, t_{ii}^{r-1}$
- ▶ E step: Compute conditional probabilities $z_i = k|\mathbf{x}_i|$ using current value θ^{r-1} of the parameter:

$$t_{ik}^{r} = t_{k}^{r}(\mathbf{x}_{i}|\theta^{r-1}) = \frac{p_{k}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}{\sum_{l=1}^{K}p_{l}^{r-1}h(\mathbf{x}_{i}|\alpha_{k}^{r-1})}.$$
 (1)

▶ M step: Update ML estimate θ^r using conditional probabilities t_{ik}^r as mixing weights

$$L(\theta|\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{t}^r) = \sum_{i=1}^n \sum_{k=1}^K t_{ik}^r \ln\left[p_k h(\mathbf{x}_i|\alpha_k)\right],$$

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the
- ▶ Biased estimators

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values x^m using x^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace **E** step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical

- \bullet $\bar{\theta} = (\theta^r)_{r=1,...,R}$
- missing values imputed using empirical MAP value (or expectation)

S. lovleff (Lille 1)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ► Replace **E** step by a simulation step (Optional)
- ▶ **S** step: generate labels $\mathbf{z}^r = \{\mathbf{z}_1^r, ..., \mathbf{z}_n^r\}$ according to the categorical distribution $(t_m^r, 1 \le k \le K)$.

SEM and SemiSEM does not converge point wise. It generates a Markov chain.

- $\triangleright \bar{\theta} = (\theta^r)_{r=1,...,R}$
- missing values imputed using empirical MAP value (or expectation)

S. lovleff (Lille 1)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ▶ Biased estimators

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values x^m using x^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace **E** step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical

- $\bar{\theta} = (\theta^r)_{r=1,\dots,R}$
- missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values x^m using x^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace **E** step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical

- $\bar{\theta} = (\theta^r)_{r=1,\dots,R}$
- missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values x^m using x^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace **E** step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical

- $\bar{\theta} = (\theta^r)_{r=1,\dots,R}$
- missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace E step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical

- $\bar{\theta} = (\theta^r)_{r=1,...,R}$
- missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ **IS step:** simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ► Replace **E** step by a simulation step (Optional)
- ▶ **S** step: generate labels $\mathbf{z}^r = \{\mathbf{z}_1^r, ..., \mathbf{z}_n^r\}$ according to the categorical distribution $(t_{ik}^r, 1 \le k \le K)$.

- $\blacktriangleright \bar{\theta} = (\theta^r)_{r=1,...,R}$
- ▶ missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ **IS step:** simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ► Replace **E** step by a simulation step (Optional)
- ▶ **S** step: generate labels $\mathbf{z}^r = \{\mathbf{z}_1^r, ..., \mathbf{z}_n^r\}$ according to the categorical distribution $(t_{ik}^r, 1 \le k \le K)$.

- $\triangleright \bar{\theta} = (\theta^r)_{r=1,...,R}$
- ▶ missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ► Replace **E** step by a simulation step (Optional)
- ▶ **S** step: generate labels $\mathbf{z}^r = \{\mathbf{z}_1^r, ..., \mathbf{z}_n^r\}$ according to the categorical distribution $(t_{ik}^r, 1 \le k \le K)$.

- $\blacktriangleright \bar{\theta} = (\theta^r)_{r=1,...,R}$
- ▶ missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ► IS step: simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , t_{ik}^{r-1} .
- ► Replace **E** step by a simulation step (Optional)
- ▶ **S** step: generate labels $\mathbf{z}^r = \{\mathbf{z}_1^r, ..., \mathbf{z}_n^r\}$ according to the categorical distribution $(t_{ik}^r, 1 \le k \le K)$.

- $ightharpoonup \bar{\theta} = (\theta^r)_{r=1,...,R}$
- ▶ missing values imputed using empirical MAP value (or expectation)

Drawbacks

- ► The I step may be difficult
- ► EM algorithm may converges slowly and is slowed down by the imputation step
- ► Biased estimators

Solution: Use Monte Carlo

- ► Replace I step by a simulation step
- ▶ IS step: simulate missing values \mathbf{x}^m using \mathbf{x}^o , θ^{r-1} , $t_{i\nu}^{r-1}$.
- ► Replace **E** step by a simulation step (Optional)
- ▶ S step: generate labels $z^r = \{z_1^r, ..., z_n^r\}$ according to the categorical distribution $(t_{ik}^r, 1 \leq k \leq K)$.

SEM and SemiSEM does not converge point wise. It generates a Markov chain.

- \bullet $\bar{\theta} = (\theta^r)_{r=1,\dots,R}$
- missing values imputed using empirical MAP value (or expectation)

S. lovleff (Lille 1)

Mixed Data

Mixed data are handled using conditional independence of the variables.

- 1. Observation space of the form $\pmb{X} = \pmb{X}_1 \times \pmb{X}_2 \times \ldots \times \pmb{X}_L$
- 2. x_i arises from a mixture probability distribution with density

$$f(\mathbf{x}_i = (\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots \mathbf{x}_{Li})|\theta) = \sum_{k=1}^K \pi_k \prod_{l=1}^L h^l(\mathbf{x}_{li}|\alpha_{lk}).$$

3. The density functions (or probability distribution functions) $h^l(.|\alpha_{lk})$ can be any implemented model.

MixAll implements Gaussian, Poisson, Categorical, Gamma distributions. MixtComp implements Gaussian, Poisson, Categorical and specific distributions for rank and ordinal data.

Sommaire

Clustering using Mixture Models

Classification of Satellite Image Time Series
Cube of Data
Missing Data/Noisy Data/Sampling
(Long term) Objective
Modeling
Missing Values?

- ▶ Défi Mastodons: Appel à Projet 2016 "Qualité des données"
- Creation of the CloHe (CLustering Of Heterogeneous Data with applications to satellite data records) project
- ► Members: Mathieu Fauvel (INRA), Stéphane Girard (Inria Grenoble), Vincent vandewalle (Lille2), Crisitan Preda (Université Lille 1)

https://modal.lille.inria.fr/CloHe/

Formosat-2 is no more operational

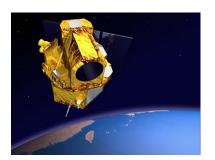


Figure: Formosat-2 furnished multi-spectral data (R, G, B, NIR) with a 8 meter resolution. 17 complete images of France by year

Sentinel-2A start service in 2016.

Figure: Sentinel-2 furnish 13 spectral bandwidths with 4 bandwidths with a 10 meters resolution and 6 bandwidths with a 20 meters resolution. A complete image of France every 5 days

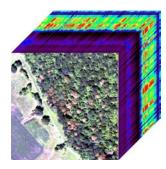


Figure: Sentinel-2 furnish approximately 20TB of images/year, and cover the entire France in 5 days with 1.6 milliard de pixels.

$$\begin{aligned} \mathbf{X} &= (X_{ikt}), & i \in I, \quad k \in \{\mathsf{r}, \mathsf{v}, \mathsf{b}, \mathsf{ir}\}, \\ \mathbf{Y} &= (Y_i), & i \in J \subset I. \end{aligned}$$

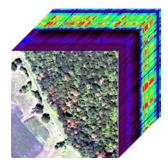


Figure: Sentinel-2 furnish approximately 20TB of images/year, and cover the entire France in 5 days with 1.6 milliard de pixels.

Data Cube

$$\mathbf{X} = (X_{ikt}), \quad i \in I, \quad k \in \{r, v, b, ir\},$$

 $\mathbf{Y} = (Y_i), \quad i \in J \subset I.$

- \blacktriangleright i = (x, y) geographic position,
- ► k spectral band,
- ► t dates.
- missing values (clouds, ported
- noisy data (undetected
- ▶ mixel (mixture of pixel)

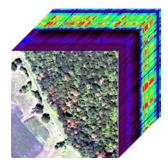


Figure: Sentinel-2 furnish approximately 20TB of images/year, and cover the entire France in 5 days with 1.6 milliard de pixels.

Data Cube

$$\mathbf{X} = (X_{ikt}), \quad i \in I, \quad k \in \{r, v, b, ir\},$$

 $\mathbf{Y} = (Y_i), \quad i \in J \subset I.$

- \blacktriangleright i = (x, y) geographic position,
- ► k spectral band,
- ► t dates.
- missing values (clouds, ported shadows) at some dates and some positions,
- noisy data (undetected
- ▶ mixel (mixture of pixel)

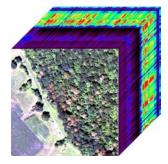


Figure: Sentinel-2 furnish approximately 20TB of images/year, and cover the entire France in 5 days with 1.6 milliard de pixels.

Data Cube

$$X = (X_{ikt}), i \in I, k \in \{r,v,b,ir\},$$

 $Y = (Y_i), i \in J \subset I.$

- \blacktriangleright i = (x, y) geographic position,
- ► k spectral band,
- ► t dates.
- missing values (clouds, ported shadows) at some dates and some positions,
- noisy data (undetected shadows, cloud veil, etc...).
- ▶ mixel (mixture of pixel)

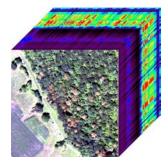


Figure: Sentinel-2 furnish approximately 20TB of images/year, and cover the entire France in 5 days with 1.6 milliard de pixels.

Data Cube

$$X = (X_{ikt}), i \in I, k \in \{r,v,b,ir\},$$

 $Y = (Y_i), i \in J \subset I.$

- \blacktriangleright i = (x, y) geographic position,
- ► k spectral band,
- ► t dates.
- missing values (clouds, ported shadows) at some dates and some positions,
- noisy data (undetected shadows, cloud veil, etc...).
- mixel (mixture of pixel)

Missing data

Figure: Very cloudy

Figure: A few number of clouds

Figure: "sheeps"

Figure: Some clouds with a veil 23 Juin 2017

Noisy Data

Figure: clouds and their shadows

Non-Uniform sampling

Figure: Path-row grid for Landsat acquisitions. Every path (North-South track) is acquired on the same date every 16 days.

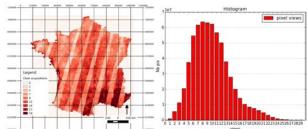


Figure: Map of the number of times that every pixel sees the ground taking into account satellite revisit and cloud cover.

Figure: Histogram of the number of times that every pixel sees the ground taking into account satellite revisit and cloud cover.

Open Access: http://www.mdpi.com/2072-4292/9/1/95/htm

The aim is to be able to cluster the whole France using Sentinel-2 data.

- ▶ $Y_i \in \{1, ..., G\},$
- $\blacktriangleright \mathcal{L}(X_i|Y_i=g) = \mathcal{N}(\mu_g, \Sigma_g)$
- ► Two kinds of parsimony assumptions on covariance matrices
 - lacktriangle independence between spectra $\Sigma_{g,k}$ of size T imes T, (T=17)
 - \blacktriangleright or independences between times, $\Sigma_{\sigma,t}$ of size $K \times K$, (K=4)
- ▶ handle missing values for both models
- ▶ Implementations and tests in a R package.

- ▶ $Y_i \in \{1, ..., G\},$
- $\blacktriangleright \mathcal{L}(X_i|Y_i=g) = \mathcal{N}(\mu_g, \Sigma_g)$
- ► Two kinds of parsimony assumptions on covariance matrices
 - ▶ independence between spectra $\Sigma_{g,k}$ of size $T \times T$, (T = 17),
 - \blacktriangleright or independences between times, $\Sigma_{g,t}$ of size $K \times K$, (K=4).
- ▶ handle missing values for both models
- ▶ Implementations and tests in a R package.

- ▶ $Y_i \in \{1, ..., G\},$
- $\blacktriangleright \mathcal{L}(X_i|Y_i=g) = \mathcal{N}(\mu_g, \Sigma_g)$
- ► Two kinds of parsimony assumptions on covariance matrices
 - ▶ independence between spectra $\Sigma_{g,k}$ of size $T \times T$, (T = 17),
 - or independences between times, $\Sigma_{g,t}$ of size $K \times K$, (K = 4).
- ▶ handle missing values for both models
- ▶ Implementations and tests in a R package.

- ▶ $Y_i \in \{1, ..., G\},$
- $\blacktriangleright \mathcal{L}(X_i|Y_i=g) = \mathcal{N}(\mu_g, \Sigma_g)$
- ► Two kinds of parsimony assumptions on covariance matrices
 - ▶ independence between spectra $\Sigma_{g,k}$ of size $T \times T$, (T = 17),
 - or independences between times, $\Sigma_{g,t}$ of size $K \times K$, (K = 4).
- ► handle missing values for both models
- Implementations and tests in a R package.

Missing values formation process

Missing At Random (MAR): Probability for a value to be missing does not depends from its value conditionally to the other observations.

Denote
$$\mathbf{x}_{ik}^{+} = \begin{pmatrix} \mathbf{x}_{i}^{O} \\ \mathbf{x}_{ik}^{M+} \end{pmatrix}$$
, $\tilde{\Sigma}_{ik}^{+} = \begin{pmatrix} \mathbf{0}_{i}^{O} & \mathbf{0}_{i}^{OM} \\ \mathbf{0}_{i}^{MO} & \tilde{\Sigma}_{ik}^{M+} \end{pmatrix}$ with 0 null matrix, and $\tilde{\Sigma}_{ik}^{M+} = \Sigma_{ik}^{M} - \Sigma_{ik}^{MO} (\Sigma_{ik}^{O})^{-1} \Sigma_{ik}^{OM}$. then

$$\Sigma_k^+ = \frac{1}{n_k^+} \sum_{i=1}^n \left[(x_{ik}^+ - \mu_k^+)(x_{ik}^+ - \mu_k^+)' + \tilde{\Sigma}_{ik}^+ \right]$$

$$ilde{oldsymbol{\Sigma}}^{\mathsf{M}^+}_{ik}$$

is correcting the variance due to the imputation by the mean.

Figure: Tree species classification with G=13

Main assumption

$$Y|Z=k \sim GP(\mu_k, C_k), \ k=1,\ldots,K$$
 (2)

where $GP(\mu_k, C_k)$ is a Gaussian Process with mean $\mu_k \in L_2(I)$ and with covariance operator $C_k : I \times I \to \mathbb{R}$.

▶ mean functions belongs to a J—dimensional subspace

$$\mu_k(t) = \sum_{j=1}^J \alpha_{kj} \varphi_j(t),$$

► Covariance function

$$C_k(s,t)(h_k) = \theta_k Q((t-s)/h_k),$$

► Spectrum are independents.

S. lovleff (Lille 1)

Main assumption

$$Y|Z=k \sim GP(\mu_k, C_k), \ k=1,\ldots,K$$
 (2)

where $GP(\mu_k, C_k)$ is a Gaussian Process with mean $\mu_k \in L_2(I)$ and with covariance operator $C_k : I \times I \to \mathbb{R}$.

► mean functions belongs to a *J*—dimensional subspace

$$\mu_k(t) = \sum_{j=1}^J \alpha_{kj} \varphi_j(t),$$

► Covariance function

$$C_k(s,t)(h_k) = \theta_k Q((t-s)/h_k),$$

► Spectrum are independents.

Main assumption

$$Y|Z=k \sim GP(\mu_k, C_k), \ k=1,\ldots,K$$
 (2)

where $GP(\mu_k, C_k)$ is a Gaussian Process with mean $\mu_k \in L_2(I)$ and with covariance operator $C_k : I \times I \to \mathbb{R}$.

▶ mean functions belongs to a J—dimensional subspace

$$\mu_k(t) = \sum_{j=1}^J \alpha_{kj} \varphi_j(t),$$

► Covariance function

$$C_k(s,t)(h_k) = \theta_k Q((t-s)/h_k),$$

► Spectrum are independents.

Main assumption

$$Y|Z = k \sim GP(\mu_k, C_k), \ k = 1, \dots, K$$
 (2)

where $GP(\mu_k, C_k)$ is a Gaussian Process with mean $\mu_k \in L_2(I)$ and with covariance operator $C_k : I \times I \to \mathbb{R}$.

▶ mean functions belongs to a *J*—dimensional subspace

$$\mu_k(t) = \sum_{j=1}^J \alpha_{kj} \varphi_j(t),$$

► Covariance function

$$C_k(s,t)(h_k) = \theta_k Q((t-s)/h_k),$$

► Spectrum are independents.

S. lovleff (Lille 1)

Estimation of Continuous Model

For each i, let $\mathcal{B}_{\ell,j}^i = arphi_j(t_\ell^i)$, $m_{ki} = \mathcal{B}^i lpha_k$ and

$$\Sigma_{j,j'}^{i}(h_k) = \theta_k Q((t_j^i - t_{j'}^i)/h_k) =: \theta_k S_{j,j'}^i(h_k),$$

then

$$y_i|Z_i = k \sim \mathcal{N}_{T_i}(m_{ki}, \theta_k S^i(h_k)), \ k = 1, ..., K, \ i = 1, ..., n$$

we end up with K independent minimization problems:

$$egin{aligned} (\hat{lpha}_k,\hat{h}_k) &= rg\max_{lpha_k,h_k, heta_k} \sum_{Z_i=k} \log \det S^i(h_k) + T_i \log heta_k \ &+ rac{1}{ heta_k} (y_i - B^i lpha_k)^ op S^i(h_k)^{-1} (y_i - B^i lpha_k) \end{aligned}$$

Results

About 65% well classified.

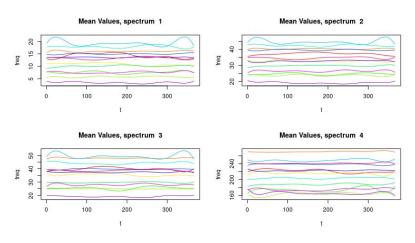


Figure: G = 13 spectrum

Mean values

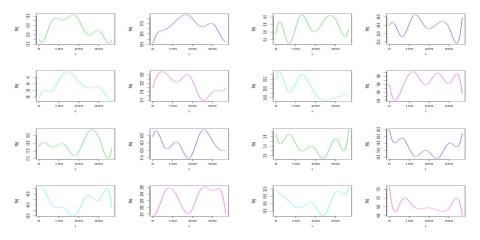


Figure: first, 4th, 7th and 11th classes

Links

- ► https://cran.r-project.org/web/packages/MixAll/
- ▶ https://massiccc.lille.inria.fr/
- ▶ https://modal.lille.inria.fr/CloHe/
- http://www.mdpi.com/2072-4292/9/1/95/htm